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AMG / AMGe Framework

� AMGe heuristic is based on multigrid theory:
interpolation must reproduce a mode up to the same 
accuracy as the size of the associated eigenvalue

� Bound a measure (weak approximation property):

� Localize the measure to build AMGe components
� Several variants developed: E-Free, Spectral
� Based on pointwise relaxation
� Assumes coarse grid is a subset of fine grid
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We are generalizing our AMG framework 
to address new problem classes

� Maxwell and Helmholtz problems have huge near 
null spaces and require more than pointwise 
smoothing to achieve optimality in multigrid

� Our new theory allows for any type of smoother, and 
also works for a variety of coarsening approaches
(e.g., vertex-based, cell-based, agglomeration)

� Paper submitted

Model of a section of the Next 
Linear Collider structure

Resonant frequencies in 
a Helmholtz Application
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Preliminaries…

� Consider solving the linear system

� Consider smoothers of the form

where we assume that (M+MT− A) is SPD (necessary 
& sufficient condition for convergence)

� Note: M may be symmetric or nonsymmetric

� Smoother error propagation
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Preliminaries continued…

� Let  P : ℜnc → ℜn be interpolation (prolongation)

� Let  R : ℜn → ℜnc be some “ restriction” operator
— Note that R is not the MG restriction operator
— The form of R will be important later

� Define  Q : ℜn → ℜn to be a projection onto range(P); 
hence Q=PR such that RP=I
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Two new measures

� First measure:

� Second measure: Define (M) ≡ ½(M+MT) , then

� Measure µσ is the analogue to the AMGe measure
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First measure and MG convergence

� Theorem: Assume that the following holds for some 
constant K:

Then, 2-level MG converges uniformly:

Here, QA = P(PTAP)-1PTA is the A-orthogonal projector 
onto range(P)

� As in AMGe, we could try to directly localize this 
new measure to help us build AMG algorithms

� But, we will take a different approach

µ( Q, e) ≤ K ∀e∈ℜn \ {0}
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Second measure and MG convergence

� Bounding µσ also implies uniform convergence…
� Lemma: Assume that (M+MT− A) is SPD.  Then,

where ∆ ≥ 1 measures the deviation of M from (M)

and where  0 < ω ≡ λmax(σ(M)-1A) < 2 .

� Must insure “ good” constants
— in particular, ω « 2
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General notions of C-pts & F-pts

� Recall the projection  Q=PR, with RP=I

� We now fix R so that it does not depend on P
— Defines the coarse-grid variables, uc = Ru

— Recall that  R= [ 0, I ] (PT= [ WT, I ]T) for AMGe; i.e., the coarse-
grid variables were a subset of the fine grid

— C-pt analogue

� Define  S : ℜns → ℜn s.t.  ns= n− nc and  RS = 0
— Think of range(S) as the “smoother space”, i.e., the space on 

which the smoother must be effective
— Note that S is not unique
— F-pt analogue

� Sand RT define an orthogonal decomposition of ℜn; 
any vector e can be written as e = Ses+ RTec
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The Min-max Problem

� Consider the following base measure, where X is any 
SPD matrix:

� Theorem: Define 

The arg min satisfies  STAP* = 0 and the minimum is

� We will call P* the optimal interpolation operator

),(µ≡µ XX ≠
∗ xamnim

eP 0
eRP

))()((λ=µX
−−∗ 11

nim SASSXS TT

,

)−(,)−(
≡),(µX

eeA

eQIeQIX
eQ



RDF 12CASC

The Min-max Problem… and AMGe

� The optimal interpolation has the general form:

� For AMGe, the coarse-grid variables are a subset of 
the fine grid:

Hence,

I
RASSASRSP

−
∗

)()(−=
TTTT 1

I
S

I
W

PIR =;=;=
0

0

A

A

I

AA
P ∗

−
∗ )(λ

=µ,−=
ff

cfff

nim

1

X



RDF 13CASC

The Min-max Problem… Spectral AMGe 
and Smoothed Aggregation (SA)

� For Spectral AMGe and SA, the coarse-grid variables 
are coefficients of basis functions:

where the pi are orthonormal eigenvectors of A with 
eigenvalues λ1 ≤ … ≤ λn .  Hence,

� The optimal interpolation can also be viewed as a 
“ smoothed” tentative prolongator
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The new theory separates construction of 
coarse-grid correction into two parts

� The following measures the ability of a given coarse 
grid Ωc to represent algebraically smooth error:

� Theorem: (1) Assume that µ* ≤ K for some constant K.
(2) Assume that any one of the following holds for η ≥ 1:

Then, µ(PR, e) ≤ ηK, ∀e.
� (1) insures coarse grid quality – use CR
� (2) insures interpolation quality – necessary condition 

that does not depend on relaxation!
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CR is an efficient method for measuring 
the quality of the set of coarse variables

� CR (Brandt, 2000) is a modified relaxation scheme 
that keeps the coarse-level variables, Ru, invariant

� We have defined several variants of CR, and shown 
that fast converging CR implies a good coarse grid:

� Hence, CR can be used as a tool to efficiently 
measure the quality of a coarse grid!

� General idea: If CR is slow to converge, either increase 
the size of the coarse grid or modify relaxation

� F-relaxation is a specific instance of CR
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We can use CR to choose the coarse grid

� To check convergence of CR, relax on the equation

and monitor pointwise convergence to 0
� CR coarsening algorithm:
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Using CR to choose the coarse grid

� Initialize U-pts

� Do CR and redefine 
U-pts as points 
slow to converge

� Select new C-pts as 
indep. set over U
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Using CR to choose the coarse grid

� Initialize U-pts
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CR based on matrix splittings

� Theorem: Assume that (M+MT− A) is SPD.  Then,

where ∆ and ω are as before, and ρs = (I − Ms
-1As) As

.
� Fast converging CR implies good coarse grid
� If relaxation is based on a splitting  A = M − N, then M

is explicitly available, and CR is probably feasible

ek + 1 = ( I − Ms
− 1As) ek; Ms = STMS; As = STAS
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CR based on additive subspace methods

� Consider the following additive method:

where Ii : ℜni → ℜn and ℜn = ∪i range(Ii).
� Define full rank normalized operators Si and Ri

T s.t. 
range(Si) = range(Ii

TS) and range(Ri
T) = range(Ii

TRT)

� The Ii must be chosen so that Ri Si=0

� Then an additive CR is given by

� Same theoretical result as before, but with ∆ = 1
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Compatible Additive Schwarz is natural 
when R= [ 0, I ]

� Just remove coarse-grid points from subdomains
� It is clear that Ri Si=0 for any choice of Ii

Additive Schwarz CR Additive Schwarz
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More general form of CR

� Here, Smust be normalized so that STS = I

� This variant of CR is always computable
� Theoretical result currently requires SPD smoother, 

M, and involves an additional constant:

where γ∈[0,1) satisfies
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Another general form of CR (due to 
Brandt and Livne)

� As before, Smust be normalized so that STS = I

� This variant of CR is also always computable

� Theoretical result is similar, but weaker:
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Anisotropic Diffusion Example

� Dirichlet BC’s and ε∈(0,1]

� Piecewise linear elts on triangles

� Standard coarsening, i.e.,  S = [ I, 0 ]T

� The spectrum of the CR iteration matrix satisfies

� Linear interpolation satisfies, with η = 2,
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Anisotropic Diffusion Example –
leveraging previous work

� Consider the AMGe measure

� It is easy to show that  η ≥ A / ε
� As mentioned earlier, this implies

� But the AMGe method produces linear interpolation; 
it is just unable to judge its quality in this setting 
(i.e., when using line relaxation)

A ( I − Q) e
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Conclusions and Future Directions

� We have developed a more general theoretical 
framework for AMG methods
— Allows for any type of smoother
— Allows for a variety of coarsening approaches (e.g., vertex-

based, cell-based, agglomeration)

� The theory separates construction of coarse-grid 
correction into two parts:
— Insuring the quality of the coarse grid via CR
— Insuring the quality of interpolation for the given coarse grid 

(leverages earlier work)

� We have defined several variants of CR
� Will explore further the use of CR in practice
� Choosing / modifying smoothers automatically?
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